Enterprise monitoring N

Continuous Performance

. B
...as a self-service 1

..with fully-automated feedback loops L

Iﬁjl

CEl=—

dynatrace #Perform2018

0 2002 HowStuftWorks
TTE—— T

Continuous Integration

“..Is the practice, in software engineering, of merging all developer
working copies with a shared mainline several times a day.”

Pragmatically:
= autonomous, pre-scheduled build and deploy for DEV and QA
" inclusive of an automated “build verification test”

= is rarely autonomous or unattended

Implementation basics:

= powered-by Visual Studio, Jenkins, Bamboo

" integrated with code version control and config mgmt
= originated with eXP and test driven development (TDD)

Continuous Delivery

“the practice o}§ continuous delivery further extends Cl by making sure
the software checked in on the mainline is always in a state that can
be c_v’gg{loyed to users and makes the actual deployment process very
rapid.

Pragmatically:

= automates release management between QA and PROD
= highly automated and orchestrated deploy/roll-back

= automated tests validate the code is “release ready”

= requires more rigorous, elaborate checking

Implementation basics:
= powered-by Puppet, Chef, VMWare, Home-grown
= defined as a part of eXP — refined by Jez Humble/Dave Farley

Continuous Performance Lifecycle

Continuous Performance Lifecycle

Cl CD

Promotional Flow

Promotional Flows

From DEV to PERF (via Continuous Integration)
= Performance regression testing — repeated testing and trending
= New code and app config changes
= New applications and integrations to be tested
= Unit-level performance information data

From PERF to OPS (via Continuous Delivery)
= Validation that a release will meet performance demand
= Performance guidance — top ten “worst offenders”
= Performance threshold update — re-configure APM monitors
= Performance test report generated and published to RM

Feedback Flow

Feedback Flow

From OPS -> PERF
= Monitoring performance in PROD, setting new trends/thresholds
= Synchronizing test simulation with PROD (volume, mix, throughput)
= Synchronizing thresholds with PROD (resources, app metrics)
= Production issue repro/remediation — performance escalation

PERF->DEV
= Performance defects — bottlenecks and proposed remediation
= Early Performance Testing — unit-level performance results
= Strategic performance measurements — for architecture
= System future estimations — for PM’s and Biz

Continuous Performance Flows

Out-of-Flow Continuous Performance

Cl -> Testing -> CD

Performance Decisions

How do we make decisions about performance?

= We make decisions based on the information we have — not with the
information we wish we had

= We make decision based on our understanding of the information we have —
with our default perspective

= |f the information is limited — the decision will be limited
= |f the information isn’t timely — our decision will be inaccurate
= |f we don’t know what came before —we can’t estimate what will come next

With every sacrifice and limitation, our value decreases.

Performance Decisions

We can analyze performance at each point of the flow:
= Every time we move code along the promotional flow
= Every time we accept feedback about performance
Every time we choose to reverse our decision to promote
Every time we decide to repeat a test
Every time we decide to log a bug
Every time we change our plans according to new information

If the performance information is not timely:
= A wrong decision may delay competitive features for the biz
= A right decision may come too late to avoid disaster
= Any decision can and should be revisited in the face of change

A

Continuous Performance Tooling

M dynatrace #Perform2018

Continuous Performance Tooling

There are 3 primary “new tools” to
add to your typical performance
testing effort/team:

= tools for unattended automation

= tools for data
trending/visualization

= tools for test notifications

DEMONSTRATION: UNATTENDED AUTOMATION WITH RUNDECK

RUNDECK v =CPE Jobs Nodes Commands

Activity

o

matomlinson v help @

Jobs (71) Filter » Expand All Collapse All
v '8 Applications

>l ARS

> i Artemis

> I AuthEngine

> W CACTS

v "B Scenarios

u IPT International Baseline Test ~ 1x load for 1 hour

u IPT International Scale Test ~ 1x, 2x, 3x load for 1 hour

u IPT International Smoke Test ~ 10 threads for 15 mins

[TN PR NS S P R S M-

Job Actions +

REVIEW: UNATTENDED AUTOMATION WITH RUNDECK

" Using Rundeck we achieve the following:

Separation of jobs for scripts, scenarios, utilities

Ab

ity to schedule automatic start

ity to “halt the automation” (e.g. a hold button)

Ab

Ability to run a script or scenario manually

Job status notification

Job activity history

DEMONSTRATION: JIMETER CUSTOMIZATIONS

[@ (] ARSRequestorUK NEW.jmx (/Users]matomIlnsonjglt/credlt perfeng/Jmeter/scrlpts/ARSRequestorUK NEijx) - Apache JMeter (3.2 r1790748)

DﬁuHEﬂ & | DO+

-=1[»» @@

. AF |

&* | |00:00:01

A" ARSRequestorUK

¥ = Modules

= _ Randomize Data Values
){; Random Percentage

& HTTP Request Defaults
?{\ HTTP Header Manager
){: HTTP Authorization Manager
¥ = Transaction Mixer
b = If TO1_GetAccountData
> = If ARSGetStatementTransactions
P = If ARSGetCycleTransactions
P = If ARSGetPromotionBalances
> = If ARSGetTransactions
» = If ARSAddMemo

¥ &3 setUp Thread Group
» . Data Setup
> p«" InfluxDB Listener
¥ i Thread Group 1
J){; Get ARS User data
= Call Modules
E} Constant Throughput Timer
¥ @ Thread Group 2
?{; Get ARS User data
iz Call Modules
{_f) Constant Throughput Timer
» 3 Thread Group 3
-~ View Results Tree
- InfluxDB Listener
E WorkBench

Test Plan

Name: ARSRequestorUK

Comments:
User Defined Variables
Name: Value
samplers ${__P(samplers,ARSGetAccountData\,ARSGetStatementTr...
sampler_mix ${__P(sampler_mix,012345)}
gl_threads ${__P(gl_threads,1)}
gl_startup_delay ${__P(gl_startup_delay,0)}
gl_rampup ${__P(gl_rampup,30)}
gl_loop_count ${__P(gl_loop_count,999999999)}
gl_duration ${__P(gl_duration,300)}
gl_tpm ${__P(gl_tpm,18)}
gl_data_offset ${__P(gl_data_offset,0)}
g2_threads ${__P(g2_threads,0)}
g2_startup_delay ${__P(g2_startup_delay,0)}
g2_rampup ${__P(g2_rampup,0)}
g2_loop_count ${__P(g2_loop_count,0)}
g2_duration ${__P(g2_duration,0)}
g2_tpm ${__P(g2_tpm,0)}
g2_data_offset ${__P(g2_data_offset,0)}
g3_threads ${__P(g3_threads,0)}
g3_startup_delay ${__P(g3_startup_delay,0)}
Detail Add Add from Clipboard Delete Up Down

| Run Thread Groups consecutively (i.e. run groups one at a time)

| Run tearDown Thread Groups after shutdown of main threads

| Functional Test Mode (i.e. save Response Data and Sampler Data)

Selecting Functional Test Mode may adversely affect performance.

Add directory or jar to classpath

Delete Clear

REVIEW: JMETER CUSTOMIZATIONS

" By Extending the testing tool we achieve the following:
= Portability to different environments
= Adaptability to serve multiple, different scenarios
" |mproved code-reuse and collaboration

= Results extensibility to external data stores

DEMONSTRATION: PERFORMANCE VISUALIZATION

All Transactions per Second (TPS)

[l R

ww

16:00 18:00 20:00 22:00 00:00
2017-09-25 21:46:50

= ARSRequestorUS:

= AuthRequestorExisting

= AuthRequestorNew

= CASRequestorUS
CActSRequestorUS
CMCSRequestorUS
CMPSReguestorUS
CPSRequestorUs
CSSRequestorlUS:

= GCERequestorExistingUs

HermesRequestorExisting

(=TI = = = = = I = R = A - = -]

HermesRequestorNew:

o eTArmorrarta el T L L ceae s

16:00 18:00 20:00 22:00 00:00 02:00

CASRequestorUS
ARSRequestorUS
CSSRequestorUS
CPSRequestorUS
CMPSRequestorUS
CActSRequestorUS
CMCSRequestorUS
AuthRequestorExisting
GCERequestorExistingUS
HermesRequestorExisting
HermesRequestorNew
GCERequestorNewUS
AuthRequestorNew

ARSReqguestorUS
CASRequestorUS
CPSRequestorUS
CActSRequestorUS
CMCSRequestorUs
GCERequestorExistingUS
HermesRequestorExisting
AuthRequestorExisting
HermesRequestorNew
CMPSRequestorUS
GCERequestorNewlUS
CSSRequestorUS
AuthRequestorNew

All - Active Threads

current

ARSRequestorUS 300
AuthRequestorExisting 100

AuthRequestorNew 50
CASRequestorUS 100
CActSRequestorUS 1

M"MH |IH|'|

CMCSRequestorUs 100
CMPSRequestorUS 100

CPSRequestorUS 100
CSSRequestorUS 100

"ﬂ' R o

|||||||||'\ ‘

16:00 18:00 20:00 22:00 00:00 02:00 04:00

All Error %

|Il il llnlﬂrﬁll#l (Y RTUIRT T 0

16:00 18:00 20:00 22:00 00:00 02:00 04:00

GCERequestorNewUS 50
HermesRequestorExisting 100

HermesRequestorNew 50

ARSRequestorUS
CPSRequestorUS
CActSRequestorUS
CMCSRequestorUS
CASRequestorUs
GCERequestorExistingUS
HermesRequestorExisting
AuthRequestorExisting
HermesRequestorNew
CMPSRequestorUS
GCERequestorNewUS
CSSRequestorUS
AuthRequestorNew

DEMONSTRATION: PERFORMANCE VISUALIZATION

i

b:00 b:U bl b:U b4 b:U

DEMONSTRATION: PERFORMANCE VISUALIZATION

320 000
280,000
240,000
200,000
160,000
120,000

80,000

40,000

[l
19-Dec 04.00 08.00 12.00 16:00 20.00 20-Dec 04:00 0800 12.00 16:00 20.00 21-Dec 04:00 08.00 12.00 16:00 20.00 22-Dec 04:00 08.00 12:00 16:00 20:.00 23-Dec 04.00 08.00 12:00 16:00 20:.00

REVIEW: PERFORMANCE VISUALIZATIONS

We reviewed the following in Grafana and Dynatrace:
= Connection to a time-series database (e.g. InfluxDB)
= Separation of dashboards by app
= Combined dashboard for all traffic
= Drill-down capability: digging deeper into metrics
= Consistent coloring, helps to remember metrics
= Advanced features for viewing timeframe and refresh
= Advanced metrics querying, granularity and aggregation

DEMONSTRATION: NOTIFICATION AND COMMUNICATION

PayPal -

Mark Tomlinson

= All Unreads
& All Threads

Starred

help-credit-Inp
1t-1054

1t-1056

1t-1069

#+ It-db-sync

It-ipt-domestic

It-ipt-international

It-pre-push

& timonium-lt-te... © (3
John Pfeifer IV
saiprasad setty
William Safee

#It-ipt-domestic —
& 27 | %0 | Add atopic O @ ‘O\

Yesterday

i saiprasad setty 9:27 AV
— CNR + flashback

in LTO1

i saiprasad setty 9:33AM ¥
uploaded this image: Not a perfect Soak Run ~

Al Transactions per Second (TPS)

m

(lxillllllmlni\nwlnmu"“”‘“”“"““*"

|
AR A

. saiprasad setty 9:33 AM
ARS requestor failed and error % was touching 40% for quite good amount of time

investigating the last night run

Terrance APP 9:33 AM

@

Q

A

DEMONSTRATION: NOTIFICATION AND COMMUNICATION

< Load Test / LOADTEST-1054

A Test Artemis utils - 2.2.0-develop-201709141749130353

Edit (> Comment Assign = More ~ On Hold = Resolve =
Activity
Time Tracking
Al Comments | Work Log History Activity Transitions + .
Estimated:
I 1d
>) _CPT _USER added a comment - 5 days ago LOAD TEST SUMMARY: LOADTEST-1054 BaselineTest R...
Remaining:
5 older comments P 1d
} ~ F} CPT USER added a comment - Yesterday Logged:
. Not Specified
LOAD TEST SUMMARY: LOADTEST-1054 BaselineTest RUNS
Agile

Timeframe: Sep 27, 2017 02:41AM to Sep 27, 2017 02:58AM GMT
View on Board

Project Link: https://jira.paypal.com/browse/LOADTEST-1054

Comment:

GRAFANA DASHBOARDS

e https://lvs1-cpesg-u01.lvs.its.paypalcorp.com:3000/dashboard/db/1-ipt-overview?
from=1506480118690&to=1506481104290

¢ https://lvs1-cpesg-u01.lvs.its.paypalcorp.com:3000/dashboard/db/2-cpu-overview?
from=1506480118690&to=1506481104290

o https://lvs1-cpesg-u01.lvs.its.paypalcorp.com:3000/dashboard/db/3-authengine-dashboard?

I3 Export ~

REVIEW: NOTIFICATION AND COMMUNICATION

We reviewed the following in Slack:
* Individual channels for apps/teams
* Combined channels for all traffic
= Real-time notification of test events
= Bot-identity ..making the automation more personable

We reviewed the following in JIRA Comments:
= Automatic summary comment from the test results
= Links to drill-down into the results tools/dashboards

OTHER TOOLS

Consider a few other things you might need:
= Managing test data state continuously (flashbacks/restore)
= Service Virtualization - simulating external systems
= Support for different load generation tools
= Application log analysis — grepping for exceptions/errors
= Storage for all the results data...can get HUGE over-time

£= @atling

2 Jenkins HInfluxDB
=~RUNDECK
APACHE ANSIBLE

b JECGUSIM Jocker - JMeterm

s +Bamboo
&

WHERE TO START...

Mdynatrace perform2018

WHERE TO START...

DevOps Handbook Part 2 “Where to Start”

= Greenfield vs. “Brownfield”
= Systems of Record vs. Engagement
= Sympathetic and Innovative Teams

= Expanding DevOps/Continuous-ness

The

DevOps
EINE D00

Consider the following guestions at the start:

= are your stakeholders/customers ready for continuous feedback? How
will they react? Will they value faster feedback?

= do you use information radiators/visual mediums to deliver the
performance trends visually?

= do you have notification systems (email, chatops, Slack) for
communication to results and trends?

= are your test environments configured to support unattended, non-stop
test runs?

= do you have the tools and licenses ready for more executions?

GRADUAL ADOPTION:

Slowly introduce continuous performance:
= Consider just 1 day a week to run non-stop testing
= Consider a team that already dominates your schedule
" |t takes time for people to adjust to frequent feedback, how to
react and behave
=You will also receive feedback on your tooling/visuals — take
time to improve

Start with Dev...

Cl

...then add Production

SUMMARY

= Performance can be measured continuously

" Know the difference: promotion and feedback

" One-time performance tests vs. repeated testing
= Absolute vs. relative measurements

= Performance decisions are made continuously

" Decisions and analysis are based on data

" Find ways to capture metrics across the lifecycle

Mark Tomlinson, Performacologist
mtomlins@perfbytes.com
mark-on-task.blogspot.com @mark_on_task
PerfBytes Podcast: @perfbytes

Thank you

10000000000000DD0O A000000000000000004
i | N\ 7 [N7 (] (HH] |
el \| /) N00d 0000 \WJ T=T
J00C , J00C
— —— Y R 7 {2 Y
— i - nr = %

[Bod B becasaooasoood 8 bod |

RWBW00000000000000000000064

7 2 7 N 7 N
T

|||E:

ipdynatrace

