
© 2018 Dynatrace

Managing Risk 
During Application 
Modernization Efforts
Using advanced performance monitoring to 
accelerate the refactoring of legacy apps to 
microservices



© 2018 Dynatrace
2Managing Risk During Application Modernization Efforts

10
Section 3
Using Dynatrace to accelerate the move to microservices – 
leveraging AI-powered automation within DevOps processes

9
Section 2
Using Dynatrace to accelerate the move to microservices – 
Modeling & architecture validation

3 Executive Summary

4
Section 1
Where to start? Identifying candidates and components  
for refactoring

Table of contents

13 Additional Resources



3
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

Executive Summary
Enterprises looking to leverage platform-as-a-service (PaaS) such as Pivotal Cloud Foundry 
and Red Hat OpenShift, typically start with two application environments:

1. New initiatives (greenfield) that can be built from the ground up using cloud native 
best practices

2. Existing application environments (brownfield) that they would like to modernize for 
the agility, scalability and performance benefits of cloud

Many of the existing workloads (brownfield) are critical applications to the business, 
generate substantial revenue, and are sensitive to disruption. While it would be ideal to 
completely re-architect these applications using cloud native principles, it is generally not 
practical or cost effective to do so. 

This briefing provides practical advice and best practices on where and how to get started 
with the refactoring of a monolithic application. In combination, this helps IT teams 
accelerate the modernization process and reduces the risk of impacting customer events and 
business processes along the way.



4
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

We tend to think of 
monoliths as being 
something bad…the only 
bad parts about it are that 
it is a single codebase and 
to scale it you must scale 
the entire thing

Where to start?
Identifying candidates and components  
for refactoring
Before we begin, let’s set the stage with a couple of assumptions:

 > You are starting with a well-structured monolith 

Before you start the process of refactoring elements of your monolith, 

you will need to do some work to ensure that it is well-structured. If you 

are not sure if you are starting with a well-structured Monolith, learn 

more by taking a look at this video “Modular Monoliths” by Simon Brown 

(@simonbrown), an industry consultant in software architecture.

 > You are using DevOps practices and tools 

To get the most out of cloud-native you need to be following DevOps 

best practices and using automation tooling for continuous integration 

(CI)/continuous delivery (CD). For more information on this, take a look 

at the eBook “Lessons Learned While Writing The DevOps Handbook” by 

authors: Gene Kim, Mark Tomlinson, Andi Grabner.

What is a monolith and 
how do I refactor it?
We tend to think of monoliths as being something bad in today’s new 

world of distributed, loosely coupled application architectures. If you have 

a well-structured monolith, the only bad parts about it are that it is a single 

codebase and to scale it you must scale the entire thing. At its very essence, 

“From a software perspective, a monolith is a combination of business 

capabilities or bounded contexts all enmeshed with a core context. The 

process of transforming an app to a microservices based architecture entails 

separation of each of these bounded contexts into their own contexts.”1

1. cloud.rohitkelapure.com/2016/05/
application-transformation-
pivotal-way.htmlMonolithic/Layered Micro Services

https://www.youtube.com/watch?v=kbKxmEeuvc4
https://twitter.com/simonbrown
https://info.dynatrace.com/apm_dtm_ops_18q1_wp_devops_handbook_lessons_learnt_en_fulfilment.html
http://cloud.rohitkelapure.com/2016/05/application-transformation-pivotal-way.html
http://cloud.rohitkelapure.com/2016/05/application-transformation-pivotal-way.html
http://cloud.rohitkelapure.com/2016/05/application-transformation-pivotal-way.html


5
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

Once candidates are 
identified…“find the 
seams” in your monolith 
and start to refactor the 
code around those

Section 1
Identifying Candidates for Refactoring
Deciding where to begin can be a daunting task. There are many things 

to consider. Some are business related, some technical related, and there 

always seems to be an economic component in the process. 

Here is how Pivotal suggests you start identifying candidates for refactoring:

Source: Refactoring the Monolith: A Systematic Approach to Application Modernization

Business considerations:
How critical is your custom application to the business? What level of risk 

can be taken with the app, and how frequently does it change? Are domain 

experts available?

Technical considerations:
Is it a suitable code base or is it riddled with twelve-factor violations? Does 

it use a suitable framework and runtime? What type of workload is it?

Economic considerations:
What amount of hardware and software investment does the app (or apps) 

merit? What sort of time window for a replatforming effort is appropriate 

given the expected outcome? What are the anticipated benefits or impact 

on revenue/cost savings?

Once candidates are identified, Pivotal recommends that you “find the 

seams” in your monolith and start to refactor the code around those. Seams 

should be thought of as “a particular business capability. Ideally it should 

http://www.pivotal.io/
https://info.dynatrace.com/apm_wc_pcf_refactoring_the_monolith_na_registration.html


6
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

“It’s amazing when you 
start turning that thought 
process around, this is a 
cultural thing, to “we can, 
and this is how we will do 
it. Or we’ll try and see if 
it works.” 

–Simon Elisha 
CTO, Pivotal

be something that must be isolated and adds business value.”2 Finding the 

seams can be difficult, and there are several ways you can approach it.

 > Talk with the teams that maintain the application

 > Talk to the users of the application

 > Static code analysis with code coverage tools

 > Event storming3 

 > <Enter your idea here>

Avoiding Analysis Paralysis
As you can see, there are many ways to try and identify where you should 

start. They can lead you in numerous directions and each has its pluses 

and minuses. The key is to start. As Simon Elisha from Pivotal said, “Getting 

overwhelmed by your legacy infrastructure, your existing estate, is often 

the biggest problem. There’s so many, “But we can’t because of this system 

or that system, etc.” It’s amazing when you start turning that thought 

process around, this is a cultural thing, to, “We can, and this is how we will 

do it. Or we’ll try and see if it works.”4 

Using a deep transaction monitoring solution can help you avoid “analysis 

paralysis” because it provides clear metrics to guide you to a decision. 

Fellow Dynatracer Mike Villiger (@mikevilliger) created a “Lenses” approach 

to identify potential functionality for refactoring:

Lens One: User Experience and Behavior Analytics
Real User Monitoring (RUM) can quickly expose candidates for refactoring 

based on activity involving those components. Looking at action frequency, 

patterns of interest emerge:

 > Highly accessed components – These are critical components of your 

application and there may be great business value in carving them out. 

They may produce a higher payoff faster, but doing so can come at a 

higher risk to the business.

 > Less accessed components – These aren’t business critical, but 

may still be valuable in carving out and refactoring. The risk to the 

business is low and doing so allows you to do a proof of concept  

(ex. reCAPTCHA functionality).

2. cloud.rohitkelapure.com/2016/05/
application-transformation-
pivotal-way.html 

3. ziobrando.blogspot.com/2013/11/
introducing-event-storming.html 

4. content.pivotal.io/blog/decoding-
the-monolith 

https://twitter.com/mikevilliger
http://cloud.rohitkelapure.com/2016/05/application-transformation-pivotal-way.html
http://cloud.rohitkelapure.com/2016/05/application-transformation-pivotal-way.html
http://cloud.rohitkelapure.com/2016/05/application-transformation-pivotal-way.html
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://content.pivotal.io/blog/decoding-the-monolith
https://content.pivotal.io/blog/decoding-the-monolith


7
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

A topology mapping 
tool, like the Dynatrace 
Smartscape® allows you to 
create a real-time map of 
all components and their 
dependencies

 > Action duration – Identify elements in the application that take a lot 

of time and contribute to a poor user experience. Identifying a poorly 

performing piece of functionality can be a great candidate that delivers 

high impact.

 > Compound metric – We call it time consumed (Duration x Action Count). 

This exposes functionality that has the most impact on end user experience. 

Lens Two: Topology & Dependency Discovery 
Moving away from user experience, we can also look at how all the pieces 

of the application communicate with each other and the dependencies that 

exist currently.

 > Service Flow – This shows you a user facing transaction and delivers 

it in an easy way to see how that transaction moves through your 

system. You can identify components that are heavily accessed and 

components that are lightly accessed. Again, based on the risk appetite, 

refactoring heavily used components will bring with them greater risk 

vs. less used components.

 > Topology Mapping – Even though this is a monolith, you will rarely 

have a monolith that is truly operating in isolation. A topology mapping 

tool, like the Dynatrace Smartscape®, allows you to create a real-time 

map of all components and their dependencies. This may expose 

dependencies you didn’t even know existed.

Dynatrace Smartscape



8
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

Lens Three: Infrastructure Metrics

You may want to identify components that are heavy consumers of system resources and use that as a starting 

point. With APM, you can view resource consumption for different components:

 > From the IaaS/Hypervisor

 > To the Virtual Machine

 > To the process

 > To the service

These lenses will help you identify candidates for replatforming, based on what the goals are of the organization 

and the impact a refactoring can have on performance. 

Monitor the User Experience
As you refactor, the likelihood that you will be able to do this in isolation is probably low. Plus, it can be 

advantageous to let real users interact with your changes. As you move through the process, you will want  

to carefully monitor the impact of each change to ensure that the end user experience isn’t impacted.



9
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

Section 2
Using Dynatrace to accelerate the move to microservices – 
Modeling & architecture validation
Understanding service interactions inside the well-structured monolith
Before you start to refactor your application, you should first model what those changes will look like. As an 

example, let’s say you have identified the functionality for “payments” in your monolith. Within the monolith 

it could look like the image on the left side in the Dynatrace Smartscape. Dynatrace allows you to model the 

payment function as a microservice (the right-side image) and “virtually break the monolith.” By doing this, it 

ensures that the architecture is validated and that tiers aren’t inadvertently crossing boundaries. 

Modeling functionality as microservices

Additionally, you can use service flow information to continue to validate the architectural structure. You want 

to make sure you identify the bounded context that represents the way we are refactoring the monolith. 

Doing this lets you look at how a change to one part of the system will impact the rest of the application.

Dynatrace Service Flow



10
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

“DevOps is fluid, and avoids 
much of the traditional 
handoff friction and 
delays between product 
development and IT 
operations through 
greater collaboration, 
communication, and 
joint responsibility for 
the success of software 
delivery.”5

– Pivotal

DevOps

As stated earlier, it is assumed that 

you are employing DevOps practices 

in your organization. DevOps has 

grown out of agile development and 

is a cultural practice. It emphasizes 

collaboration and orchestration across 

the entire organization, including 

business stakeholders, development, 

testing, deployment, and operations 

team; and allows organizations to 

quickly release new software to 

maximize business opportunities.

To learn more about DevOps, check 

out, Join the journey: Practical tips for 

scaling DevOps.

Section 3
Using Dynatrace to accelerate the move 
to microservices – leveraging AI-powered 
automation within DevOps processes

Dynatrace seamlessly integrates with your DevOps tools. Because of this 

integration, things like Tags and Environment Variables can be automatically 

pushed into Dynatrace from your DevOps tooling, and vice-versa, via our 

REST API and Command Line Interface (CLI). By integrating with Dynatrace, 

the Dynatrace AI engine can use these variables to help identify when a 

problem happens, what caused it to happen, and why.

To reap the benefits that automation can provide to your CI/CD pipeline, 

Dynatrace recommends a Shift-Left and Shift-Right approach. This will 

raise the bar on your DevOps strategy by increasing agility and velocity, 

and help you create maintain exceptional quality in your code.

 > Shifting Right – Using information from your DevOps tooling (Tags, 

Environment Variables, etc.) into Dynatrace to help Dynatrace identify 

when changes occur and the impact they have on performance. When 

we Shift Right, we are using the information to identify problems faster 

and improve mean time to repair (MTTR).

 > Shifting Left – Information from Dynatrace is pushed into your DevOps 

tooling to help you identify problem code faster. When we Shift Left, our 

goal is to break the pipeline earlier by identifying bad code as soon as 

possible and provide actionable feedback on how to fix it faster. 

5. pivotal.io/devops

https://www.dynatrace.com/solutions/devops/practical-tips-for-ops/
https://www.dynatrace.com/solutions/devops/practical-tips-for-ops/
https://pivotal.io/devops


11
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

The benefits of 
automation across 
the application 
delivery pipeline

“In our research we found 
that organizations which 
have adopted automation 
across the complete 
lifecycle including 
continuous integration, 
continuous delivery and 
production deployment 
have experienced more 
velocity and quality. 
Purposeful end-to-end 
automation is foundational 
to success especially as 
DevOps initiatives scale.”

- Rob Stroud 
Principal Analyst, Forrester 
[October 2017]

Shifting Right
Blue/Green Deployments, Canary Releases, Feature Flagging 

 > Dynatrace automatically identifies tags based on metadata on the host, 

process and service level.

• Those tags can be used to identify new code deployments, such 
as blue/green deployments, and monitor them to see if the blue is 
performing as well/better than the green.

 > Adjustments and rollback can be done automatically (see Auto & Self-

Healing below).

 > A ticket can be created/updated automatically with the cause of the 

problem, what was done to mitigate it and whether the changes solved 

the problem.

Auto & Self-Healing – While this is more valuable as an ongoing 

production capability, it does prove useful if you are refactoring a live 

application and pushing the newly created microservices into production.

 > Using Tags and identifying specific responses to identified problems, 

Dynatrace can automatically alert your CI/CD tooling to make 

adjustments in your environment, from a simple memory change all the 

way to a full roll-back.

 > Information from Dynatrace can automatically be populated into the 

ticketing system used by developers to help them identify what caused 

the problems.

Problem AI: Incident and Self-Healing



12
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

Shifting Left
Enable Fast Performance Feedback along the DevOps Pipeline - Dynatrace can help you detect all potential 

performance, scalability and architectural problems early, with details down to the root cause.

 > Utilize Dynatrace time-series API to fetch detailed data related to both response time and resource consumption 

metrics across test periods for external comparison.

 > Poll Dynatrace problems API to determine environment state before attempting an automated deployment.

 > Feed Dynatrace data into Agile story tracking tools to document success (or failure) of a new feature; both for 

business focused metrics like action counts and conversation rates as well as technical data like response times 

and resource consumption.

Self-Service Performance Testing – Working with your current DevOps tooling, Dynatrace allows developers to 

do performance testing on new code without the need for performance engineers. 

 > A developer can create a ticket and kick off a build into the performance testing environment (works off tags).

 > Results from Dynatrace and load testing software automatically gets added to the ticket.

 > Originating developer gets performance results and access to diagnostic details via a link in the ticket.

 > The performance testing function is optimized and it allows you to scale your development team’s productivity.

Self Service Performance Testing with Dynatrace

These are a few high-level examples of ways you can use Dynatrace to accelerate the development of microservices 

as you refactor your monolithic application. For more in-depth information on each of these examples, please refer 

to the links in the Additional Resources section.



13
© 2018 Dynatrace
Managing Risk During Application Modernization Efforts

When is refactoring complete?
To quote Matt Stine from the O’Reilly eBook, “Migrating to Cloud-Native 

Application Architectures”:

How do we know when we are finished? There are basically two end states:

1. The monolith has been completely strangled to death. All bounded 

contexts have been extracted into microservices. The final step is to 

identify opportunities to eliminate anti-corruption layers that are no 

longer necessary.

2. The monolith has been strangled to a point where the cost of additional 

service extraction exceeds the return on the necessary development 

efforts. Some portions of the monolith may be fairly stable—we 

haven’t changed them in years and they’re doing their jobs. There may 

not be much value in moving these portions around, and the cost of 

maintaining the necessary anticorruption layers to integrate with them 

may be low enough that we can take t on long-term.

Additional Resources
BLOGS

Auto-Mitigation with Dynatrace AI – or shall we call it Self-Healing?

Unbreakable DevOps Pipeline: Shift-Left, Shift-Right & Self-Healing

Application Transformation – The Pivotal Way

VIDEO

Building an Unbreakable Delivery Pipeline: Shift-Left, Shift-Right & Self-Healing

WEB

Scaling DevOps to deliver better software faster

What is strangling 
the monolith?

“The most important 
reason to consider a 
strangler application 
over a cut-over rewrite is 
reduced risk. A strangler 
can give value steadily 
and the frequent releases 
allow you to monitor its 
progress more carefully. …
Since you can use shorter 
release cycles with a 
strangler you can avoid 
a lot of the unnecessary 
features that cut over 
rewrites often generate.”

- Martin Fowler 
StranglerApplication

http://www.oreilly.com/programming/free/migrating-cloud-native-application-architectures.csp
http://www.oreilly.com/programming/free/migrating-cloud-native-application-architectures.csp
https://www.dynatrace.com/blog/auto-mitigation-with-dynatrace-ai-or-shall-we-call-it-self-healing/
https://www.dynatrace.com/news/blog/unbreakable-devops-pipeline-shift-left-shift-right-self-healing/
http://cloud.rohitkelapure.com/2016/05/application-transformation-pivotal-way.html
https://youtu.be/r-0xunTqwQ0
https://www.dynatrace.com/solutions/devops/
https://www.martinfowler.com/bliki/StranglerApplication.html


Dynatrace is the innovator behind the industry’s premier Digital Performance Platform, making real-time information about digital performance 
visible and actionable for everyone across business and IT. We help customers of all sizes see their applications and digital channels through 
the lens of their end users. Over 8,000 organizations use these insights to master complexity, gain operational agility and grow revenue by 
delivering amazing customer experiences.

04.12.18 2252_ManagingRiskAppMod_jg

Learn more at dynatrace.com

http://dynatrace.com

